
Using Branch-and-Price to Solve Multicommodity k-Splittable Flow
Problems

Jérôme Truffot1, Christophe Duhamel1, Philippe Mahey1

1Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes
Address: UMR 6158 - CNRS, Université Blaise Pascal, Clermont-Ferrand, France

Email: {jerome.truffot,christophe.duhamel,philippe.mahey}@isima.fr

Abstract

In this paper we present a column generation model and a branch-and-price algorithm for a multicommodity
k-splittable flow problem. The k-splittable flow is an extension of the unsplittable flow. It has been introduced
by Baier, Köhler and Skutella in [4]. This flow can be split into at most k paths. The k-splittable flow is used
to study path limitation constraints in classical flow problems. In this paper we consider only the maximal k-
splittable flow problem. First we formulate this problem with two sets of variables for each one of the k paths: path
design variables and flow variables. This leads to a large linear mixed integer program with two types of variables.
The subproblem is not exactly an unsplittable flow problem since the amount of flow is not known. This degree
of freedom complexifies this problem. Moreover the flow conservation constraint alone does not ensure that the
decision variables define a single path since any set of directed cycles satisfies this constraint. So an additional
constraint is put on each nodes cocycle. It allows only sets of disjoint directed cycles.

Next we present a path decomposition on this model, which gives us an exponential edge-path model. Then a
Branch-and-Price algorithm is applied. The branching strategy is based on the work of Barnhart and al. for the in-
teger multicommodity flow problem [5]. The column generation subproblem can be seen as a shortest path problem
with ”high” enough capacity. We propose a polynomial time algorithm to solve this subproblem. Computational
results are improved by introducing strategies like variable ordering and storing paths in a pool. Finally numerical
results are reported for the different strategies and with a direct MIP approach.

keywords: MPLS, mixed integer programming, Branch-and-Price, k-splittable flow

1 Introduction

Multiprotocol Label Switching (MPLS) is an efficient answer to the rise of Internet telecommunications. The main
idea is to gather several IP packets and give them the same label. This aims at reducing the routing tables and
improving the quality of service. On another hand the running cost increases with the number of LSP (Label
Switched Path). Thus the operator must try to limit the number of paths to route each demand. This limitation on
the number of paths is a recent constraint and it seems to introduce a big change on classical flow problems.

In order to study this new constraint, we add it to the classical maximal flow problem. This problem was first
studied by Baier and al. in [4]. They introduced the notion of k-splittable flow problem (k-SFP): a k-splittable
flow is a flow which can be splitted into at most k paths. This problem is proven to be NP-Hard even in the single
commodity case and they propose approximation algorithms.

More recently, Martens and Skutella [9] present approximation algorithms and lower bounds for the minimal
cost k-splittable flow problem. It can be seen as an extension of the unsplittable flow problem [7]. A quite similar
problem is the k-disjoint flow problem introduced by Bagchi and al. in [3]. It can be seen as an extension of the
edge-disjoint path problem [10].

In this paper, we present an exact algorithm approach for this problem. We use a Branch-and-Price algorithm
using the seminal work of Barnhart and al. on unsplittable flow problem [5] (namely the adaptated branching rule
for multicommodity flow problems). The Branch-and-Bound method was introduced by Land and Doig in [8]
and Branch-and-Price by Barnhart and al. in [6]. A Branch-and-Price algorithm with another branching rule was
proposed by Alvelos and de Carvalho in [2] for unsplittable flow problems too.



2 Models

The problem is defined over a capacitated digraph G = (V, E) in which a maximal flow has to be routed for each
commodity k ∈ K, without exceeding the arc capacities ue, e ∈ E. Furthermore, the flow for each commodity k

must be routed using less than Hk paths. For each hth path of commodity k and for each edge e, we define a flow
variable xhk

e and a decision flow support variable yhk
e . To simplify notations, a backward edge ek is introduced

with infinite capacity for each commodity. Therefore, maximisation is performed on the flow variables xhk
ek

of this
backward edge. Moreover the flow constraints use the edge-node incidence matrix A which includes this backward
edge.

For the unsplittable flow, flow constraints and binary variables are sufficient to guarantee a single path from the
source to the target of the commodity. In fact, these constraints allow a path plus any set of directed cycles that do
not improve the amount of flow for this problem. For the k-splittable flow these constraints are not sufficient. The
relative freedom between flow and flow support complexifies the model. Indeed the flow can use a directed cycle
of flow support to split and to route flow on more than one path. Figure 1 illustrates this problem: the couple of
values on each arc are the flow and the flow support variables. The flow support cycle is shown by dashed edges.

1,1S

1,1

1,1

0,1

1,12,2 2,2

2,1

T

1,1

0,10,1

1,1

Figure 1: Flow split on a directed cycle.

To prevent such situation a constraint on incoming cocycle ω−(v) of nodes v ∈ V is introduced. Limitation on
at most one incoming arc for each node forces directed cycles to be disjoint for the s,t-path. Finally, our problem is
as follows:

(LP1)



































































































max
∑

k∈K

Hk
∑

h=1

xhk
ek

s.t.

Axhk = 0 ∀k ∈ K ∀h = 1 . . .Hk (a)
Ayhk = 0 ∀k ∈ K ∀h = 1 . . .Hk (b)

∑

k∈K

Hk
∑

h=1

xhk
e ≤ ue ∀e ∈ E (c)

xhk
e − uey

hk
e ≤ 0 ∀k ∈ K ∀h = 1 . . .Hk ∀e ∈ E (d)

∑

e∈ω−(v)

yhk
e ≤ 1 ∀k ∈ K ∀h = 1 . . .Hk ∀v ∈ V (e)

xhk
e ≥ 0 ∀k ∈ K ∀h = 1 . . .Hk ∀e ∈ E (f)

yhk
e ∈ {0, 1} ∀k ∈ K ∀h = 1 . . .Hk ∀e ∈ E (g)

(1)

Another way to model this problem is to use the flow path decomposition. For each commodity k a set P k of
elementary paths from source to target is defined. For each path p of P k we note up = max

e∈p
ue the path’s capacity

and δp
e = 1 if the path p uses edge e and 0 otherwise. For each hth path of commodity k, we define the flow variable

xhk
p and the flow support variable yhk

p . Then the problem can be stated in the following extended formulation:



(LP2)



















































































max
∑

k∈K

Hk
∑

H=1

∑

p∈P k

xhk
p

s.t.

∑

k∈K

Hk
∑

h=1

∑

p∈P k

δp
exhk

p ≤ ue ∀e ∈ E (a)

xhk
p − upy

hk
p ≤ 0 ∀k ∈ K ∀h = 1 . . .Hk ∀p ∈ P k (b)

∑

p∈P k

yhk
p ≤ 1 ∀k ∈ K ∀h = 1 . . .Hk (c)

xhk
p ≥ 0 ∀k ∈ K ∀h = 1 . . .Hk ∀p ∈ P k (d)

yhk
p ∈ {0, 1} ∀k ∈ K ∀h = 1 . . .Hk ∀p ∈ P k (e)

(2)

The number of paths in set P k grows exponentially with the size of the graph. Thus this model can not be solved
directly with a general MIP solver and a dedicated Branch-and-Price algorithm is proposed in the next section.

3 Branch-and-Price Algorithm

Branch-and-Price is an efficient strategy to solve hard combinatorial problems, especially when the number of
variables is exponential. As shown by Barnhart and al. [5, 6], the branching scheme is a key point to the efficiency.
Then we need an efficient branching rule to build the decision tree. On a first hand, we look for a rule that balances
the decision tree, like Ryan and Foster branching rule [11]. On the other hand, we need the rule to keep a fast
column generation. So we have chosen the branching rule proposed by Barnhart and al. in [5]. After solving the
linear relaxation, we use the edge-node formulation to find the first divergence node d of a hth path of a commodity
k. This node is defined by the two next conditions: first there is a integer path from the source to d. Second there are
at least two edges in the outgoing cocycle ω+(d) of d, and the corresponding flow support variables are fractional.
We note a and b those two edges. Then ω+(d) is split into two balanced sets ω+(d, a) and ω+(d, b) that include
respectively arc a and b. The branching rule is defined by equation 3:





∑

e∈ω+(d,a)

yhk
e = 0



 vs.





∑

e∈ω+(d,b)

yhk
e = 0



 (3)

The relaxation of (LP2) is solved by column generation. The optimal solution may be fractional. So we apply
the branching rule but it works on the arc-node model. Then this branching rule is projected on the arc-path space.
First notice that if flow support variables are fractional, then there are usually a lot of optimal solutions and some
of them satisfy equation 4:

yhk
p =

xhk
p

up

∀k ∈ K ∀h = 1 . . .Hk ∀p ∈ P k (4)

Then the relaxed (LP2) can be reduced by substituting these yhk
p by

xhk
p

up
. We obtain the linear program (LP3).

(LP3)











































































max
∑

k∈K

Hk

∑

h=1

∑

p∈P k

xhk
p

s.t.

∑

k∈K

Hk

∑

h=1

∑

p∈P k

δp
exhk

p ≤ ue ∀e ∈ E (a)

∑

p∈P k

xhk
p

up

≤ 1 ∀k ∈ K ∀h = 1 . . .Hk (b)

xhk
p ≥ 0 ∀k ∈ K ∀h = 1 . . .Hk ∀p ∈ P k (c)

(5)



The column generation subproblem (LP4) works with dual variables πe and λhk corresponding to constraints
(a) and (b). It is defined as follows:

(LP4)























































min
∑

e∈E

ueπe +
∑

k∈K

Hk

∑

h=1

λhk

s.t.
∑

e∈E

δp
eπe +

λhk

up

≥ 1 ∀k ∈ K ∀h = 1 . . .Hk ∀p ∈ P i (a)

ue ≥ 0 ∀e ∈ E (b)
λhk ≥ 0 ∀k ∈ K ∀h = 1 . . .Hk (c)

(6)

So the reduced cost chk
p of path p in P k for each hth path of commodity k is defined by:

chk
p = 1 −

∑

e∈E

δp
eπe −

λhk

up

(7)

The new column will be the path with the highest reduced cost. It is a compromise between shortest path
and highest capacity path. In order to find it, we use a modified version of Dijkstra algorithm [1, pp 108–113] to
compute the highest capacity path among the shortest path. Moreover we add a lower capacity u constraint on this
path. We start with u = 0 and u is iteratively increased to find another shortest path which satisfies this capacity
and such that its reduced cost is maximal. We prove that this algorithm is polynomial and solves our subproblem.

Some other ideas may allow us to further speed up the path generation procedure. The first one is to build a
pool of paths for the decision tree. Indeed many paths are generated for a lot of nodes. The pool allows to use
previously generated paths for the remaining decision nodes. Thus a lot of path generations are avoided (at the cost
of bigger problems at each node) and the speed of the whole optimization procedure is increased. On the other
hand, symmetry in the linear programs is known to increase the computational time. Then we chose to apply a
variable ordering method and to break this symmetry with constraint 8.

∑

p∈P k

x(h+1)k
p −

∑

p∈P k

xhk
p ≤ 0 ∀k ∈ K ∀h = 1 . . .Hk − 1 (8)

4 Computational Results

For the testing, the instances have been randomly generated using a procedure which guarantees the existence of a
flow between source and target of each commodity. In this paper we propose some results for the single commodity
case. Multicommodity case will be tested in the future. Tests were performed on an Intel Xeon 2Ghz processor,
2GB of RAM, running Gentoo linux distibution.

CPU times in seconds and number of visited nodes of the decision tree are reported in table 1. We use the
following notation: ’C’ stands for the cplex mixed integer solver on (LP1), ’BB-V’ for the Branch-and-Bound and
variable ordering, ’BP’ for the Branch-and-Price on (LP2), ’BP-V’ for Branch-and-Price with variable ordering on
(LP2) and ’BP-VP’ for Branch-and-Price with variable ordering and paths pool management on (LP2). For each
instance H is the maximum number of paths, z∗ is the optimal solution.



Graph H z
∗ Number of nodes CPU Time (s)

BB-V BP BP-V BP-VP C BB-V BP BP-V BP-VP
5-70 1 88 1 1 1 1 0.01 0.01 0.01 0.00 0.00

2 170 1 1 1 1 0.02 0.02 0.01 0.00 0.01
3 234 63 6 31 9 0.03 0.22 0.02 0.05 0.01
4 291 118 90 49 38 0.28 0.26 0.22 0.14 0.03
5 334 6895 20243 1889 1541 4.98 38.02 58.03 6.57 1.46
6 375 32547 476461 5299 5454 1459.91 396.33 1704.37 24.35 7.40
7 412 112401 - 21639 21192 - 1317.92 - 125.31 43.66
8 447 - - 46981 51813 - - - 322.94 156.82
9 481 - - 163096 97275 - - - 1391.98 396.22

10-80 1 63 1 1 1 1 0.01 0.01 0.00 0.00 0.00
2 118 78 2 2 5 0.36 0.24 0.01 0.00 0.01
3 164 5185 49 22 20 6.22 23.55 0.07 0.04 0.01
4 199 103553 3697 321 169 2198.27 749.10 6.85 0.73 0.10
5 232 - 910205 4196 1920 - - 2239.20 12.14 1.71

Table 1: Comparing CPU Times.

The paths pool strategy clearly improves the running time and reduces the number of nodes in the tree. In table
2, SP0 and COL0 are the number of calls to Dijkstra’s algorithm and the number of paths at the root node. SP

and COL are the average number of calls to Dijkstra’s algorithm and paths generated at each node (except the root
node). The results are reported for ’BP-V’ and ’BP-VP’ strategies.

Graph H z
∗ SP0 COL0 SP COL

BP-V BP-VP BP-V BP-VP
5-70 1 88 8 2 0.00 0.00 0.00 0.00

2 170 42 12 0.00 0.00 0.00 0.00
3 234 102 27 89.48 20.78 18.06 1.22
4 291 332 72 195.18 33.45 33.86 1.16
5 334 735 125 289.62 27.72 37.42 0.18
6 375 996 168 435.31 32.54 53.90 0.08
7 412 1400 231 579.41 38.14 68.54 0.03
8 447 1872 280 713.37 44.06 81.77 0.02
9 481 2403 360 926.90 51.72 101.52 0.01

10-40 1 63 8 2 0.00 0.00 0.00 0.00
2 118 48 12 5.00 12.00 1.00 1.00
3 164 123 30 73.00 16.95 14.82 1.10
4 199 312 68 145.62 20.02 22.96 0.40
5 232 465 95 199.04 20.84 30.36 0.18

Table 2: Comparing column generation.

We can notice that the pool strategy leads to less generated path.

5 Conclusion

Our Branch-and-Price algorithm gives interesting results and is probably one of the most efficient way to solve
problems with a constraint on the number of paths. The main difficulty is to control the computational time. For
many instances, time varies from few seconds on k paths to several hours on (k + 1) paths. On the other hand, we
are going to compare Barnhart and al. branching rule with others like Alvelos and de Carvalho branching rule [2].

The maximal flow is a good problem to study this number of paths limitation constraint but it has a few direct
applications in telecom networks. So we want to apply our Branch-and-Price method to other problems. First
we want to study the minimal cost k-splittable flow problem. The formulation of this problem and the column
generation model seems to be pretty similar to the one presented here. Next we want to study the minimization of
number of LSP in MPLS routing problems. Finally we may search approximation algorithms for these problems.



References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows - Theory, Algorithms, and
Applications. Prentice Hall, 1993.

[2] Filipe Alvelos and Jos Manuel Vasconcelos Valrio de Carvalho. Comparing Branch-and-price Algorithms for
the Unsplittable Multicommodity Flow Problem. In Proceedings of the International Network Optimization
Conference, pages 7–12, 2003.

[3] Amitabha Bagchi, Amitabh Chaudhary, Christian Scheideler, and Petr Kolman. Algorithms for fault-tolerant
routing in circuit switched networks. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures, pages 265–274. ACM Press, 2002.

[4] Georg Baier, Ekkehard Köhler, and Martin Skutella. On the k-splittable flow problem. In Proceedings of the
10th Annual European Symposium on Algorithms, pages 101–113. Springer-Verlag, 2002.

[5] Cynthia Barnhart, Christopher A. Hane, and Pamela H. Vance. Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems. Operations Research, 48(2):318–326, 2000.

[6] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W.P. Savelsbergh, and Pamela H. Vance.
Branch-and-price: column generation for solving huge integer programs. Operations Research, 46:316–329,
1998.

[7] Jon M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis, Massachusetts Institute
of Technology, Dept. of Electrical Engineering and Computer Science, 1996.

[8] A. Land and A. Doig. An automatic method of solving discrete programming problems. Econometrika,
28(3):497–520, 1960.

[9] Maren Martens and Martin Skutella. Flows on Few Paths: Algorithms and Lower Bounds. In proceedings of
ESA 2004, pages 520–531, 2004.

[10] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:97–115, 1927.

[11] David M. Ryan and Brian A. Foster. An integer programming approach to scheduling. In Anthony Wren,
editor, Computer Scheduling of Public Transport : Urban Passenger Vehicle and Crew Scheduling, pages
269–280. North-Holland Publishing Company, 1981.


